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Optical communications receiver assembly placed at F1: RF/Optical dichroic,
optical filter, detector array, high-speed signal-processing equipment.
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DSN polished panel, initial daytime visual tests

DSN polished panel reflectivity, surface accuracy test DSN polished panel ray concentration
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lim A, (R)=K, Poisson calculation:

: v ez y MO ol (1 a0

{i @, @Y exp[—(Ab(m)]}Ml

j=0

Py(E)=1-P,(C)> P, (E) = P, (E)
Focal-plane |
detectorarray !

Detector-plane model of photon-counting Array and
PSF with small pointing offsets.

M1
Gaussian approximation: P, (C) = Idy Gsn[A (R)+A,(R), ] |: J dx Gsn[A, (R), x]}

* Laser transmitter appears as a point source, therefore ..

AK =1 A4

* Average signal count can be expressed as: K =1 A

* With fixed field-of-view (), the average AK, =1, Ad=(I, /] I.)AK
background count can be expressed as: K, =1, 4 bt b ’
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Focal-plane optimization with constant background intensity
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Focal-plane optimization with constant signal intensity
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Poisson computation of PSE vs K Constant PSE contours,(K ,, K, ) plane
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Probability of symbol error, PSE, for M = 4 PPM signaling as Contours of constant symbol-error probability, PSE, over

a function of K, for a range of background energies, X, . the (K;,K,) plane. Dashed curves were computed using
Poisson probabilities, solid curves computed via the faster
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Compensation for excess background energy by increasing signal
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Similarly for K, : K, =, /1)K,

energy via aperture expansion, with the goal of maintaining ) )
constant symbol-error probability of PSE = 0.1. for a >1 since lima/(a—1)=o

a—l
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N

Example: K,,=20, K, ,=10, AK 6 =3, AK, =6,
m=40/11=3.64 alla—1)=2.22
K,,=10+6.67=1667 K, =2K =333

(Ks,iaKb,i)a i:O,l, 29 7’}’1>k :]b/[s

(K. =15.5,K, =31.5)

AA=55% AD =24%

Therefore, only 55% increase in receiver collecting area (or 24% increase in receiver
diameter) is required to compensate for 100% increase in background energy.
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Proposed “simpler” algorithm for calculating final (X,,K,) values
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Other potential “simpler” algorithms

1. Gaussian approximation:

Compute PSE contour using the Gaussian approximation
Determine intersection of X, =(1,/1)K, line with Gaussian contour

Calculate PSE along k, =(1,/1,)K, constraint

2. Constrained trajectory solution:

« Starting at (0,0) calculate PSE along the K, =(1, /1)K, trajectory
using Poisson model until desired PSE is reached

Evaluation and Comparison of Reduced Complexity Algorithms
remains the subject of future work
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